
Chainguard.

All About That Base
Image
Vulnerable Base Container Images, Noisy Scanners, and the Case for “Quiet” Images.

John Speed Meyers and Zack Newman

2022



Executive Summary

TL;DR - Using “quiet” base images, minimal images with few or no vulnerabilities and built-in security,

can reduce security debt, decrease the developer’s workload, and improve development velocity.

Software environments are often referred to as a “stack,” layers of software components squashed

together. Containers, a modern and popular form of packaging software, take this abstraction literally.

Containers are built from “layers,” a set of changes to a file system, and are built on top of a so-called

base image, sometimes called a parent image, that provides an operating system and useful packages.

The bottom layer of the container stack, the base image, is crucially important. Software teams ought to

choose this image wisely because their software application inherits the properties of this base image.

Whether these vulnerabilities actually affect the final application or not, these vulnerabilities in a base

image amount to security debt, similar to the idea of technical debt, and force developers to either

accept the security risks or attempt their own patches and mitigations.

To deal with vulnerabilities found in containers, software teams increasingly use container security

scanners, tools that automatically find security vulnerabilities in a container image. But these scanners

are noisy, regularly issuing false positives.

To help software developers, security teams, and DevOps professionals better understand the security

debt of popular base images, we identified several widely used base images, applied three security

scanners to these images, and analyzed the lifetime of these vulnerabilities. Our notable findings include:

● A few base images, such as Alpine, Ubuntu, and Debian, have grown hugely popular.

● Some popular base images can have hundreds of known security vulnerabilities, although the

Alpine image, which had zero reported vulnerabilities, suggests that zero known security

vulnerabilities for a base image is possible. These findings are not specific to any one scanner.

● Some base images have vulnerabilities that were first reported almost twenty years ago.

One potential solution to the dual problem of base images with many known vulnerabilities and noisy

scanners is to use “quiet” images, minimal images with few or zero known vulnerabilities and additional

security features. Fewer reported vulnerabilities in stripped-down base images makes life easier for all

parties involved in the software process, improving security and increasing velocity. Adding additional

security features such as digital signatures, a software bill of materials, or a service-level agreement on

patching timelines offers even more potential. Quiet images, in other words, offer an alternative security

experience to developers who are tired of noisy scanners and security-debt-ridden base images.

Chainguard. Software supply chains secure by default. 1

https://github.com/opencontainers/image-spec/blob/main/spec.md
https://pythonspeed.com/articles/docker-security-scanner/
https://www.brettlischalk.com/posts/ecr-image-scanning-gotchas


A Few Base Images Have Grown Immensely Popular

Base images have become the building block of many modern software applications. As a result, many

images are now widely downloaded. In February 2022, there were at least nineteen images on Docker

Hub that had each been downloaded at least one billion times. Base images are now competing with

McDonald’s hamburgers (remember “Over 99 Billion Served”?) in the competition for ubiquity.

To understand which base images are most popular, we used GitHub code search to collect data from

publicly available “Dockerfile” specifications for container images. Figure one presents the results of a

global search across GitHub for all “FROM <x>” commands, the command that imports a base image.

This analysis draws on approximately 3.4 million Dockerfiles. To be sure, this data doesn’t actually reveal

how widely deployed a particular image is, only the number of distinct deployments using each image.

Figure 1. Distribution of All Base Images on GitHub

Note: The language-specific base images are sometimes themselves based on other base images. The above analysis does not account for this

“base images all the way down” complication. Additionally, this aggregate analysis omits the fact that each image has many different “flavors.”

A number of operating system base images such as Ubuntu and Debian are particularly popular, but so

are base images that allow the creation of programming language-specific apps like nodejs (for

Node/Javascript) or openjdk (for Java).

Chainguard. Software supply chains secure by default. 2



Filtering on the same data that generated figure one, we also analyzed the distribution of popular base

operating system images. See figure two for results.

Figure 2. Distribution of Popular Base Operating System Images on GitHub

Using GitHub code search data, Alpine, Ubuntu and Debian appear to be the most widely used base

operating system images.

Chainguard. Software supply chains secure by default. 3



Some—But Not All—Popular Base Images Have Noteworthy Security Debt

We then picked a mix of base images including several operating system images and the Node image

and submitted them to well-known container image static analysis tools. We used three–trivy (0.23.0),

grype (0.32.0), and Snyk (0.16.0), which is used by Docker scan–to ensure that this analysis isn’t specific

to one particular scanner.

We were particularly interested in the number and severity of known security vulnerabilities in a base

image. These vulnerabilities can be viewed as security debt given that a software application inherits

these vulnerabilities from a base image.

Figure 3 presents a count of total vulnerabilities by using three security scanners for five different base

images. These vulnerabilities represent so-called CVEs, or Common Vulnerabilities and Exposures, the

term for a widely used database of publicly disclosed cybersecurity vulnerabilities.

Figure 3. Base Image Total Vulnerabilities Count by Image and Scanner

Chainguard. Software supply chains secure by default. 4



Figure 4 presents a count of vulnerabilities by severity using the same three security scanners for the

same five different base images.

Figure 4. Base Image Vulnerabilities Count by Image, Scanner, and Severity

Chainguard. Software supply chains secure by default. 5



The results suggest that the security-conscious should be wary of the Node (Debian flavor) base image.

Depending on the scanner, there are either a couple hundred or closer to a thousand known

vulnerabilities in this base image. This is a level of debt that would make even U.S. medical students

blush. Notably, scans of the Alpine flavor of node (node:17-alpine) returned between zero and four

vulnerabilities, suggesting that the vulnerabilities in the Node base image are associated with the base

image itself rather than Node specifically. This finding suggests that the flavor of a base image can have

a strong influence on the scan results.

The Debian, Red Hat Universal Base Image and Ubuntu images are roughly similar. There are, depending

on the scanner and image, twenty-five to one hundred vulnerabilities and the majority of these

vulnerabilities have a medium or low status. This level of security debt is noticeably lower than for Node,

though still not zero.

The Alpine base image, a “security-oriented” image that contains less than ten packages, had no known

security vulnerabilities in the scanned version. Of course, security vulnerabilities constantly emerge and

base images change, so this finding should not be construed as implying that Alpine images are secure

forever. It’s also worth noting that the Alpine maintainers have invested time in ensuring the data quality

of security fixes and ensuring scanners don’t flag false positives. In sum, zero security debt for a

container image is possible.

Chainguard. Software supply chains secure by default. 6



Paying Off Security Debt is Hard, Or How Old Vulnerabilities Die Hard

To further understand the vulnerabilities associated with these popular base images, we analyzed the

year that each vulnerability was first reported for all vulnerabilities within each base image. Figure five

presents an analysis for each image using data from the trivy scanner.

Figure 5. Base Image Vulnerabilities by Year Reported for Select Images

Note: Because of the relatively high number of reported vulnerabilities for the Node image, the axis scale for that image was increased by a factor of

ten. Additionally, the relatively short bars in 2022 could reflect that these analyses were performed in February 2022.

Chainguard. Software supply chains secure by default. 7



All base images, except for Alpine, had vulnerabilities stretching back several years. The Node image

even had twenty-five vulnerabilities dating back to either 2004 or 2005. Interestingly, the Red Hat and

Ubuntu image vulnerabilities were clustered within the past five years while the Debian vulnerabilities

were spread across many years. This data suggests that the images do not contain these vulnerabilities

due to lack of time. It’s more likely that these vulnerabilities remain because of factors such as a

conscious decision to not fix a vulnerability and excessive attack surface, the result of extraneous

packages, which makes zero-vulnerabilities a herculean task.

In short, security debt can stick with a base image.

Chainguard. Software supply chains secure by default. 8



“Quiet” Base Images: Avoiding the Din of Noisy Security Scanners

The scanners used for this analysis are likely “noisy,” producing many false positives. Even if these

findings are not true positives, however, the many false positives pollute the scan results, forcing

software developers and security teams to divert their time from building new software. For instance,

high-security organizations such as the U.S. military now require two separate security scans of

containers, an onerous requirement especially if there are many reported potential vulnerabilities. Some

organizations even devote considerable resources to maintaining long Excel lists of reported

vulnerabilities and implemented mitigations.

There are a number of alternative approaches to coping with the dual problem of noisy security scanners

and base images with many known vulnerabilities. VEX, the Vulnerability-Exploitability eXchange, for

instance, provides a way for software suppliers to use the VEX format to relay the information that a

particular vulnerability is not exploitable in the final product. In a similar vein although not focused on

containers, OSV.dev, provides an open source software vulnerability scan database and triage

infrastructure that provides relatively detailed vulnerability information to ease the vulnerability

remediation tasks of open source maintainers and consumers.

Fortunately, there exists another approach, one suggested by the Alpine Linux results. First, base images

ideally ought to embrace a “less is more” principle, reducing the image’s attack surface in the same way

that tidiness guru Marie Kondo has decluttered our lives. Many vulnerabilities are found in the “clutter” of

an image, those extraneous and unnecessary packages along for the ride in a base image. In particular,

removing a shell from a base image closes a potentially unnecessary access point for attackers, turning

an open door into a brick wall. Second, these minimal base images ought then to have few or no

reported vulnerabilities–”quiet” images–which reduces the burden for all involved parties. Developers

avoid triaging vulnerabilities. Security teams avoid making long Excel lists of vulnerabilities and

remediations. Software users get secure software faster and cheaper.

In short, a quiet base image with security features built-in-by default, like digital signatures, a software

bill of materials, and a service-level agreement on patching timelines, offers an alternative approach to

the status quo. If you too are interested in peace and quiet when it comes to container base images,

please let us know!

Chainguard. Software supply chains secure by default. 9

https://dodcio.defense.gov/Portals/0/Documents/Library/DoD%20Enterprise%20DevSecOps%20Reference%20Design%20-%20CNCF%20Kubernetes%20w-DD1910_cleared_20211022.pdf
https://ntia.gov/files/ntia/publications/vex_one-page_summary.pdf
https://osv.dev/
https://www.sigstore.dev/
https://blog.chainguard.dev/what-an-sbom-can-do-for-you/
https://blog.chainguard.dev/what-an-sbom-can-do-for-you/
https://docs.google.com/forms/d/e/1FAIpQLScvVC3rXfP1YEl30gooniudyBoD0yq490FHCQofy8UlVtdOZg/viewform


References

Ariadne Conill, “The Vulnerability Remediation Lifecycle of Alpine Containers,” Personal Blog, June 8,

2021, available at

https://ariadne.space/2021/06/08/the-vulnerability-remediation-lifecycle-of-alpine-containers/.

Drew DeVault, “Developers: Let distros do their job,” Personal Blog, September 27, 2021, available at

https://drewdevault.com/2021/09/27/Let-distros-do-their-job.html.

John Speed Meyers is a security data scientist at Chainguard. He contributes to research and data

science efforts related to open source software security, advancing Chainguard’s mission of making the

world’s software supply chain secure by default.

Zack brings his passions of developer tooling and applied cryptography to Chainguard. After 4 years as a

software engineer and tech lead on Google Cloud SDK, he moved to MIT CSAIL to research

authenticated data structures and Tor network performance. He is excited to work with the TUF and

Sigstore communities to make the open-source world more secure.

John Speed and Zack thank their fellow guardians for the ample constructive critique that improved this

research, though all mistakes remain theirs alone.

Chainguard. Software supply chains secure by default. 10

https://ariadne.space/2021/06/08/the-vulnerability-remediation-lifecycle-of-alpine-containers/
https://drewdevault.com/2021/09/27/Let-distros-do-their-job.html

